UKR ENG
PATENTBUREAU Web-magazine "Intellectus" Innovation & Commercialization Китайские математики доказали гипотезу Пуанкаре
TEMPORALOGY
INTELLECTUAL PROPERTY
INTELLIGIBILISATSIA
SYMBOLISM & HERALDRY
* MATRIKULA
INFORMERS

Китайские математики доказали гипотезу Пуанкаре

Китайские математики опубликовали полное доказательство гипотезы Пуанкаре, сформулированной в 1904 году, передает новостное агентство Xinhua. Гипотеза, касающаяся классификации многомерных поверхностей (а точнее, многообразий), входила в число "проблем тысячелетия", за решение каждой из которых американский Институт Клэя назначил награду в миллион долларов.

 

"Бутылка Клейна", двумерное многообразие, иллюстрация с сайта olem3d.obidos.org

Согласно Пуанкаре, любая замкнутая трехмерная "поверхность без дыр" (односвязное многообразие) эквивалентна трехмерной сфере, то есть поверхности четырехмерного шара. Сам Пуанкаре, автор математического аппарата эйнштейновской теории, представил первое обоснование, но позже обнаружил в собственных рассуждениях ошибку. Гипотезу в такой формулировке доказал в 2003 году российский математик Григорий Перельман, 70-страничную работу которого эксперты проверяют до сих пор. Другие случаи (размерности четыре и выше) были рассмотрены ранее.

По словам авторов, новая 300-страничная статья в Asian Journal of Mathematics не является независимой и опирается в первую очередь на результаты Перельмана. Чжу Сипин и Цао Хуайдун утверждают, что теперь ликвидировали ряд трудностей, способы преодоления которых Перельманом были только намечены. Известно, что в работе над доказательством также участвовал Шин-Тунь Яу, топологические труды которого (в частности, теория многообразий Калаби-Яу) считаются ключевыми для современной теории струн.

Новая работа, отмечают специалисты, также потребует длительной перепроверки.

Джерело: lenta.ru, 5 червня 2006

Публікація на тему: Unraveling toughest puzzle outstanding - Xinhua, 04.06.2006

Висловити думку у Форумі